Les capacités expérimentales au programme de Spécialité Physique Chimie

Voici l'ensemble des **capacités expérimentales** qui doivent être acquises à l'issue des deux années d'enseignement de spécialité Physique Chimie.

Trois capacités expérimentales sont communes à l'ensemble des thèmes :

- respecter les règles de sécurité liées au travail en laboratoire ;
- mettre en œuvre un dispositif d'acquisition et de traitement de données : microcontrôleur, interface d'acquisition, tableur, langage de programmation ;
- utiliser un logiciel de simulation.

Voici les capacités expérimentales à acquérir par thème, les capacités en italique n'étant pas au programme des ECE.

Matière

- Préparer une solution par dissolution ou par dilution en choisissant le matériel adapté.
- Réaliser le spectre d'absorption UV-visible d'une espèce chimique.
- Réaliser des mesures d'absorbance, de pH, de conductivité en s'aidant d'une notice.
- Mettre en œuvre un test de reconnaissance pour identifier une espèce chimique.
- Tracer une courbe d'étalonnage pour déterminer une concentration.
- Mettre en œuvre le protocole expérimental d'un titrage.
- Réaliser une pile et un circuit électrique intégrant un électrolyseur.
- Utiliser un logiciel de simulation de structures moléculaires et des modèles moléculaires.
- Mettre en œuvre une extraction liquide-liquide.
- Réaliser le montage des dispositifs de chauffage à reflux et de distillation fractionnée et les mettre en œuvre.
- Mettre en œuvre un dispositif pour estimer une température de changement d'état.
- Réaliser une filtration simple ou sous pression réduite, un lavage, un séchage.
- Réaliser une chromatographie sur couche mince.
- Respecter les règles de sécurité lors de l'utilisation de produits chimiques et de verrerie.
- Respecter le mode d'élimination d'une espèce chimique ou d'un mélange pour minimiser l'impact sur l'environnement.

Mouvement et interactions

- Mettre en œuvre un dispositif permettant d'illustrer l'interaction électrostatique.
- Utiliser un dispositif permettant de repérer la direction du champ électrostatique.
- Collecter des données sur un mouvement (vidéo, chronophotographie, etc.).
- Utiliser un dispositif permettant d'étudier la poussée d'Archimède.
- Mesurer une pression et une vitesse d'écoulement dans un gaz et dans un liquide.

Énergie

- Utiliser un multimètre, adapter le calibre si nécessaire.
- Réaliser un montage électrique conformément à un schéma électrique normalisé.
- Mettre en œuvre un protocole permettant d'estimer une énergie transférée électriquement ou mécaniquement.
- Mettre en œuvre un dispositif pour réaliser un bilan énergétique et suivre l'évolution de la température d'un système.

© Éditions Hatier, 2020 Page 1/2

Signaux

- Mettre en œuvre un dispositif expérimental permettant d'illustrer la propagation d'une perturbation mécanique.
- Mettre en œuvre un dispositif expérimental permettant de collecter des données sur la propagation d'une perturbation mécanique (vidéo, chronophotographie, etc.).
- Mettre en œuvre un dispositif permettant de mesurer la période, la longueur d'onde, la célérité d'une onde périodique.
- Commander la production d'un signal grâce à un microcontrôleur.
- Mesurer un niveau d'intensité sonore.
- Utiliser un luxmètre ou une photorésistance.
- Estimer la distance focale d'une lentille mince convergente.
- Réaliser un montage optique comportant une ou deux lentilles minces.
- Mettre en œuvre un dispositif pour illustrer la synthèse additive ou la synthèse soustractive.
- Mettre en œuvre un dispositif pour illustrer que la couleur apparente d'un objet dépend de la source de lumière.
- Mettre en œuvre un protocole expérimental permettant d'obtenir un spectre d'émission.
- Mettre en œuvre des dispositifs permettant d'étudier les phénomènes de diffraction et d'interférences.
- Mettre en œuvre un dispositif permettant d'étudier l'effet Doppler en acoustique.
- Utiliser une cellule photovoltaïque.
- Utiliser un oscilloscope.
- Réaliser un montage électrique pour étudier la charge et la décharge d'un condensateur dans un circuit RC.
- Respecter les règles de sécurité préconisées lors de l'utilisation de sources lumineuses.
- Respecter les règles de sécurité préconisées lors de l'utilisation d'appareils électriques.

© Éditions Hatier, 2020 Page 2/2