A. Télécharger Chemsketch®

1. Taper dans un moteur de recherches « télécharger Chemsketch » puis, si vous utilisez un système d'exploitation Windows, télécharger le fichier auto-exécutable du type chemsk12.exe.

2. Lancer l'installation (accepter les propositions, si vous n'êtes pas spécialiste) : elle dure moins d'une minute. Lorsque le logiciel Chemsketch[®] est installé, le programme peut être lancé depuis son raccourci dans la liste des programmes.

B. Prise en mains de Chemsketch®

1. Lancer le logiciel :

ChemSketch

Il est rédigé en anglais.

Une fenêtre plein écran s'ouvre et une petite fenêtre supplémentaire vous invite à vous enregistrer. Vous pouvez le faire, mais c'est facultatif, il est possible de fermer cette fenêtre sans s'enregistrer.

33													A	CD/C	hemS	ketch	(Free	ware)	- [no	name	e01.sk	2]										-		×	
File	Edit	Pages	<u>I</u> ools T	emplate	s <u>O</u> ptio	ons J	ocume	nts Ad	dd_Ons	I-Lab	ACD/	Labs <u>}</u>	lelp																						
Stru	icture	Draw	00	2	a a 1		2 6	4	×®		0,0	166	%	•	Pa	•	2	1 (1)	Z	INCH	*33	(D Log	pP Put	hen	eM@leouli	s Miller	lipider 🚽							6	3
٩	0	2	14	~	11	1	HAR -	P G	+	1 1	f 📑 a	•a []	. 3	4	17.	R .	6 4	đ	0	+	大法														
-	mm 0		10	20	30		40	5	50	60		70	80		90		100	11	0	120		130		140	150	1	60	170	180		190	200	210		
A	0																																^		
Any	1																																	800	8
6	-																																	CH2F	Ph
	10																																	C)
N																																		C)
0	20 -																																	0	2
F	-																																	1-Bi	k
Na	-				-																													i-Pr	۲
Si	30				C	-н4																												COCH	H3
P	1																																	C00	ан
s	40																																	COP	h
CI	4																																	NO	6
ĸ																																		0.4/	ċ
Br	50																																	su'	
-	1																																	~~~	
C	60																																		
R.	-																																		
+	1																																		
,¥,	70																																		
#	1																																		
	80 -																																		
	1																																		
	1																																		
	90 -																																		
	-																																		
	100	<																															>		
×	100 1					11	110					_	_			_			_	_					_	_	_						-	More	-14
http:/	www.a	cdlabs.c	om/acdlat	bs-rss-f	eed.xml:	14:49	Cannot	downlo	ad RSS	Bl http:/	lwww.a	cdlabs.c	om/ac	dlabs-r	ss-fee	d.xml:	14:49	Cannot	downle	oad R	SSI http	p://www	w.acdla	abs.com	n/acdiab	s-rss-fe	ed.xml: *	14:49 C	annot dov	wnload R	SSI http:	//www.acdla	b Set	up RSS	s
•••	HLa	b Login	NONAMED	1.SK2	Modified	40	Page 1	/1 ()Þ	Fragme	ents: 1	CH4 F	W: 16.04	246																				Prop	perties	5
1-C	nemSk	etch 2	Databas	e 3-Ch	nemCod	ler																													

2. Le logiciel possède de très nombreuses options. Nous nous limitons dans ce document à un très petit nombre d'entre elles, permettant :

- la construction d'une formule semi-développée ou d'une formule topologique ;
- l'importation de cette formule vers un document texte ;
- la visualisation de cette molécule en trois dimensions.
- 3. On distingue dans la fenêtre :
- une colonne de gauche où apparaissent les principaux atomes formant les molécules organiques ;
- une ligne de gestion des menus, en haut de l'écran ;
- deux lignes d'icônes pour les raccourcis usuels ;
- une zone de grande dimension pour le tracé et l'affichage.

C. Construction et manipulation de molécules hydrogénées à un atome central

1. Sélectionner un atome en cliquant sur la lettre qui le désigne dans la colonne de gauche. (Par défaut, c'est l'atome de carbone qui est sélectionné.)

2. Cliquer en un point quelconque de la fenêtre d'affichage. La formule brute de la molécule formée de l'atome, entouré d'atomes d'hydrogène (en respectant la règle des deux ou huit électrons) s'affiche. Ainsi :

• sélectionner C et cliquer en un point quelconque de la fenêtre ;

• faire de même avec H ; • faire de même avec N ; • faire de même avec O. On obtient :

											ACE	D/ChemS	ketch (Free	eware)	- [nona	ame01.s	k2]
<u>F</u> ile	<u>E</u> dit	<u>P</u> ages	Tools	Te <u>m</u> plates	<u>Options</u>	<u>D</u> ocuments	Add <u>-</u> On	s I- <u>L</u> ab	<u>A</u> CD/Lal	os <u>H</u> elp	р						
Str	ucture	Draw	1	ጋ 省 🖫	<i>🕘</i> 🔁	•) (*	s X 🕯		⊕_ Q	166%	*	۰ 🍋	° //	8 🚳	Ä 🕨	сы 💖	🙀 LogF
Q.	0	1		~~	were /	- HAR -	⊖ <u>_</u> +	1.4	i 📑 a→a	[] _n	32	⊽ I≯ ·	🖗 🔶 🦂		0	2 💑 🤅	* =
	mm 0		10 	20	30	40	50	60 	70 ll.		80	90 	100	110		120	130
A	0																
Any																	
С	10 -																
н	-																
N				CH₄	H	, NH	3 Ho	0									
0	20			-			· ··2										

3. On peut travailler sur une de ces molécules en la sélectionnant. On a accès à la flèche de la souris

en cliquant sur l'icône située au-dessus de la colonne des atomes (en posant la souris dessus, sans cliquer, « Select/move » s'affiche). Après avoir cliqué, on dessine un cadre autour de la molécule choisie, elle apparaît entourée d'un rectangle à 9 points. On sélectionne par exemple la molécule de méthane (ci-contre).

4. La molécule étant sélectionnée, on peut placer le cadre dans un tampon en cliquant sur Ctrl C, puis exporter ce cadre vers un fichier d'un autre type, un fichier texte en particulier en cliquant sur Ctrl V :

 CH_4

5. La molécule étant sélectionnée, on peut la déplacer grâce aux flèches du clavier, la copier, la supprimer.

6. La molécule étant sélectionnée, on peut faire apparaître sa formule développée en cliquant sur : **Tools > Add Explicit Hydrogens**

<u>F</u> ile	<u>E</u> dit	<u>P</u> ages	Tools	Te <u>m</u> plates	<u>Options</u>	<u>D</u> ocuments	Add <u>-</u> Ons	I- <u>L</u> ab	ACD/La	abs <u>H</u> e	lp	
Stru	icture	Draw	✓ Strue	cture <u>P</u> ropert	ies	Alt+Shift+	s 🕻 🛍		θQ	166%	¥	0
■	Mm (<u>C</u> lea Che <u>3</u> D S <u>M</u> as	in Structure ck <u>T</u> automeri Structure Opti sSpec Scissor	c Forms mization s	F Ctrl+Shift+ Ctrl+Shift+	²⁹ + ,	60	a→ 7	a [] _n 0	80	⊽
Any			Show	w Aromaticity	/	Ctrl+Shift+	A					
	10-		<u>H</u> ide	e Aromaticity		Ctrl+Shift+	н					
н			<u>E</u> xpa	and Shorthan	d Formulae	Ctrl+Shift+	F					
N	-		Add	Explicit Hydr	ogens	Ctrl+Shift+	Y					
0	20 -		Rem	nove E <u>x</u> plicit H	lydrogens	Ctrl+Shift+	R		•			
F	-		Brin	g Bond(s) to	Eront	Ctrl+	F		• (CH ₄		
Na	30 -		Send	d Bond(s) to E	Bac <u>k</u>	Ctrl+	K					
Si			Auto	o Renumberir	ng	Ctrl+Shift+	N					
Р	1		Clea	r Numbering		Ctrl+Shift+	L			Ц		
s	40		Gen	erate			•			ΞÏ		
CI			Sear	ch for Structu	ure	Ctrl+Shift+	с		H	∣—ċ	H	-
к	-		Calc	ulate:			•					
Br										Н		

7. Pour avoir accès aux représentations en trois dimensions (3D), il vaut mieux repartir de la formule brute ou semi-développée d'une molécule. Sélectionner cette molécule et

cliquer sur l'icône ^{*} à droite au-dessus de la fenêtre d'affichage (en posant la souris dessus, sans cliquer, « 3D Optimization » s'affiche). La molécule apparaît alors sous forme développée, en perspective, mais toujours en noir sur fond blanc, dans un cadre rectangulaire à 9 points.

En posant la souris sur ce cadre, sans cliquer, deux flèches courbes entrelacées s'affichent. Si on clique en maintenant le doigt appuyé et qu'on fait bouger la souris, on fait tourner la molécule pour mieux la voir dans l'espace.

8. Pour exporter la molécule dans l'environnement 3D de Chemsketch[®], cliquer sur l'icône située juste au-dessus de l'icône précédente d'affichage (en posant la souris dessus, sans cliquer, « 3D Viewer » s'affiche). Une nouvelle fenêtre s'ouvre, la zone d'affichage est sur fond noir, et la molécule apparaît en modèle 3D, les atomes apparaissant avec des couleurs prédéfinies, bleu ciel pour C, blanc pour H, bleu foncé pour N, rouge pour O.

Quatre modes d'affichage sont possibles, on passe de l'un à l'autre en cliquant sur l'une des icônes suivantes :

Si on clique sur la molécule en maintenant le doigt appuyé et qu'on fait bouger la souris, on fait tourner la molécule pour mieux la voir dans l'espace.

9. On revient à l'environnement précédent en fermant la fenêtre 3D (croix en haut à droite) ou en cliquant sur 1-ChemSketch en bas à gauche.

10. La gestion de sauvegarde et d'ouverture des fichiers générés par Chemsketch[®] est conforme aux règles habituelles. On peut ainsi sauver le fichier en cours en cliquant sur :

File > Save As > nom du fichier.sk2

D. Construction et manipulation de molécules plus complexes

Un réglage préliminaire de l'affichage est conseillé, pour éviter les atomes « fantômes » :

- Cliquer sur **tools > Structure properties**. Une fenêtre s'affiche.

- Cocher, si ce n'est pas fait par défaut, dans l'onglet **Common**,

Show Carbons

- Et cliquer sur Set Default.

1. Sélectionner un atome en cliquant sur la lettre qui le désigne dans la colonne de gauche (par défaut, c'est l'atome de carbone qui est sélectionné). Cliquer en un point quelconque de la fenêtre d'affichage. La molécule hydrogénée apparaît, comme dans la **partie B**.

2. Pour lier l'atome choisi à un deuxième atome, sélectionner cet atome en cliquant sur la lettre qui le désigne dans la colonne de gauche (par défaut, c'est l'atome de carbone qui est sélectionné). Cliquer sur le premier atome, maintenir le doigt appuyé et déplacer la

Properties ? ×
Current Style
Normal V Save Del
Common Atom Bond Special
Show Carbons Image: All image: All image: All image: Cross Out Invalid Atom Image: Terminal image: Cross Out Invalid Atom Size Calculation Atom Symbol Size 10 Image: Atom Style 10
Arial V 0.7 pt V
Apply Set Default
Update From Restore Default

souris pour former la liaison, lâcher le doigt, la molécule apparaît, le logiciel calculant et affichant systématiquement le nombre d'atomes d'hydrogène nécessaires pour compléter la molécule selon la règle des huit électrons.

3. Pour créer une double liaison entre deux atomes, placer la souris au-dessus de la liaison, cliquer une fois, la double liaison est créée, le nombre d'atomes d'hydrogène est automatiquement calculé et affiché.

4. Pour obtenir la formule topologique à partir d'une molécule :

- sélectionner la molécule ;

- faire disparaître les atomes d'hydrogène en cliquant sur **Remove Explicit Hydrogens** dans l'onglet **Tools**;

- cliquer sur tools > Structure properties. Une fenêtre s'affiche.

- décocher (cliquer jusqu'à ce que le carré soit vide) **Show Carbon All** et **Terminal** puis cliquer sur **Apply** : on obtient ainsi la formule topologique de la molécule.

Exemple : construction et manipulation d'un alcool

Construisons par exemple la molécule de propan-1-ol.

• Cliquer sur C.

 \bullet Cliquer en un point quelconque de la fenêtre d'affichage : CH_4 s'affiche.

• Il est inutile de cliquer à nouveau sur C, déjà sélectionné. Cliquer sur le C qui est affiché, maintenir le doigt appuyé, déplacer la souris vers la droite, lâcher le doigt, H_3C-CH_3 s'affiche.

• Il est inutile de cliquer à nouveau sur C, déjà sélectionné. Cliquer sur le deuxième C affiché, maintenir le doigt appuyé, déplacer la souris vers la droite, lâcher le doigt, H₃C–CH₂–CH₃ s'affiche.

• Cliquer sur 0 dans la colonne de gauche.

• Cliquer sur le troisième C affiché, maintenir le doigt appuyé, déplacer la souris vers la droite, lâcher le doigt, H₃C-CH₂-CH₂OH s'affiche : on a construit la molécule de propan-1-ol, sa formule semi-développée est affichée dans la fenêtre.

• Pour obtenir sa formule développée, cliquer sur l'icône

(Select/Move), sélectionner la molécule complète : elle apparaît dans un rectangle à 9 points. Cliquer sur **Tools > Add Explicit Hydrogens** : la formule développée apparaît.

• Pour obtenir sa formule topologique, cliquer sur l'icône complète : elle apparaît dans un rectangle à 9 points.

Cliquer sur Tools > Structure properties.

Décocher Show Carbon All et Terminal puis cliquer sur Apply.

Cliquer sur **Clean structure** 🥙 pour faire apparaître les sommets.

• La molécule (en formule semi-développée) étant sélectionnée, cliquer sur l'icône Optimization). La molécule apparaît alors sous forme développée, en perspective.

• Pour exporter la molécule dans l'environnement 3D de

Chemsketch[®], cliquer sur l'icône (3D Viewer). Une nouvelle fenêtre s'ouvre, la zone d'affichage est sur fond noir, et la molécule apparaît en modèle 3D, les atomes apparaissant avec les couleurs prédéfinies, bleu ciel pour C, blanc pour H, rouge pour O. En sélectionnant le mode d'affichage Balls and Sticks, on obtient le rendu ci-contre.

(Select/Move), sélectionner la molécule

© Éditions Hatier 2020

Exemple : construction et manipulation d'un acide carboxylique

Construisons par exemple la molécule d'acide 2-méthyl-butanoïque.

• Cliquer sur C.

 \bullet Cliquer en un point quelconque de la fenêtre d'affichage, CH_4 s'affiche.

• Cliquer sur le C qui est affiché, maintenir le doigt appuyé, déplacer la souris vers la droite, lâcher le doigt.

• Cliquer sur le deuxième C affiché, maintenir le doigt appuyé, déplacer la souris vers la droite, lâcher le doigt.

• Cliquer sur le troisième C affiché, maintenir le doigt appuyé, déplacer la souris vers la droite, lâcher le doigt.

• Cliquer à nouveau sur le troisième C affiché, maintenir le doigt appuyé, déplacer la souris vers le haut, lâcher le doigt. On a fini la construction de la chaîne carbonée ramifiée.

• Cliquer sur O dans la colonne de gauche.

• Cliquer sur le quatrième C affiché, maintenir le doigt appuyé, déplacer la souris vers la droite, lâcher le doigt (-OH s'affiche).

• Cliquer à nouveau sur le quatrième C affiché, maintenir le doigt appuyé, déplacer la souris vers le bas, lâcher le doigt (– OH s'affiche). Cliquer sur la liaison entre C et O, elle devient double (C=O s'affiche, le groupe carboxyle est créé). On a construit la molécule, sa formule semi-développée est affichée dans la fenêtre.

• Pour obtenir sa formule topologique, cliquer sur l'icône (Select/Move), sélectionner la molécule complète : elle apparaît dans un rectangle à 9 points.

Cliquer sur Tools > Structure properties.

Décocher Show Carbon All et Terminal puis cliquer sur Apply.

Cliquer sur **Clean structure** *v* pour faire apparaître les sommets.

• En cliquant sur l'icône (3D Optimization) puis sur

l'icône (3D Viewer) et en sélectionnant le mode d'affichage Balls and Sticks, on obtient le rendu ci-contre.

