FICHEUTILISER UN LOGICIEL D'ACQUISITIONMÉTHODEAUDIO ET TRACER UN SPECTRE

Complément numérique • Utiliser Audacity®

Manuel p. 182

Énoncé

Enregistrer le son d'une note de musique, tracer son chronogramme (variation de l'intensité sonore au cours du temps), puis déterminer sa fréquence.

Méthodologie

Stopper l'enregistrement Démarrer l'enregistrement

x piano 1,0 Muet Solo 0,5-G 0,0-Mono,44100Hz -0,5-32 bits flottant -1,0 Enregistrement (« chronogramme ») d'une note de musique.

2 Faire un « zoom » sur le signal : utiliser l'outil loupe pour délimiter la zone à agrandir.

« Zoom » sur quelques périodes.

Oéterminer la fréquence du son

• À partir du chronogramme

Utiliser l'outil de sélection pour sélectionner par exemple 20 périodes.

La fréquence du son est égale à : $f = \frac{1}{T} = 4,4 \times 10^2$ Hz.

Les 20 périodes ont une durée égale à 0,045 s. On a donc : $20 \times T = 0,045$ s $T = \frac{0,045}{20} = 2,25 \times 10^{-3}$ s.

• Avec l'outil de tracé de spectre d'Audacity

Sélectionner la partie de son à analyser, puis cliquer sur l'onglet « Analyse » et « Tracer le spectre ».

Attention

L'algorithme de calcul du spectre a besoin d'un nombre suffisant de points : si la durée du son sélectionnée n'est pas assez grande, le tracé du spectre ne sera pas possible !

Le spectre permet de déterminer la fréquence fondamentale : f = 440 Hz.

On retrouve la fréquence que l'on avait déterminée par calcul grâce au chronogramme.

NB : avec Audacity[®] , le spectre est représenté en utilisant une échelle logarithmique pour l'intensité (ordonnée exprimée en dB).

Spectre du son obtenu avec Audacity[®] (échelle semi-logarithmique).

• Avec l'outil de tracé de spectre de Regressi®

• Sauvegarder l'ensemble ou bien une partie du son enregistré dans un fichier audio : cliquer sur l'onglet « Fichier », puis « Exporter » et choisir « Exporter en WAV ».

Exporter	>	Exporter enMP3	À savoir Lorsqu'on ne s'intéresse qu'à une partie du son, il est aussi possible de p'oprogistrer que cette
Importer	>	Exporter en WAV	
Chaînes	>	Exporter l'audio Exporter l'audio sélectionné.	
Mise en page			sélectionné ».

- · Ouvrir le logiciel Regressi®, puis cliquer sur l'onglet « Ouvrir ».
- Sélectionner « Audio », puis ouvrir le fichier contenant le son de la note de musique.

Par défaut, contrairement à Audacity[®], l'échelle des ordonnées est linéaire, ce qui facilite l'interprétation du spectre.

En cliquant sur \checkmark , les valeurs de la fréquence fondamentale et des harmoniques apparaissent sur le spectre : on retrouve la valeur de la fréquence fondamentale (f = 440 Hz).

Spectre du son obtenu avec Regressi® (échelle linéaire).